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This report summarizes recent progress by Signal Innovations Group (SIG) in supporting 

the Naval Research Laboratory (NRL) on development of a new low-frequency sonar 

system. SIG has the tasks of developing the algorithms and transitioning them to NRL, 

for use in sea tests. The discussion below provides a summary of the following items: (i) 

a kernel-based matching pursuits classification algorithm, (ii) life-long learning, (iii) in 

situ learning, and (iv) a discussion of the features used within the algorithms. Items (i) 

and (iv) are fully transitioned to NRL, and have been employed during sea tests. Items 

(ii) and (iii) are currently under development by SIG, in cooperation with NRL.  

 
 
A. Kernel Matching Pursuits (KMP) 

 
 Assume the feature vector is a d-dimensional real vector dℜ∈x , which we wish 

to map to a label }1,0{∈y ; label y=1 may correspond to a mine, and y=0 to clutter. We 

aim to learn the optimal parameters w of the functional relationship ),( wxfy =  between 

d independent feature variables x and the dependent output variable y.  To accomplish 

this learning task we are provided with N  labeled observations, N
iii y 1},{ =x  that are 

assumed to be independently and identically drawn from an unobservable underlying 

distribution. We are interested in learning sparse kernel machines of functional form  
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where 0,nw  is the bias term, ) ,  ( ⋅⋅K  is a kernel function measuring the similarity between 

two data samples 
T
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with N
1iiy =}{  the kernel-induced basis function centered at ic , and  

T
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are the weights that combine the basis functions in the summation, and the subscript n is 

used to denote the number of basis functions being used, with n<N. In the context of the 

binary classification problem consider in this section, a given x is mapped to an estimated 



{0,1}∈y  as 0.5])(U[ −= xfy , where )U(α  is a unit step function, equal to one for 

0≥α , and equal to zero otherwise.  

 The KMP implements a set of functions of the form in (3). Assume we are given a 

training set N
iii y 1},{ =x  , where xi is the ith input and yi its expected output. The weighted 

sum of squared errors between the expected output and the KMP output given in (3) is 
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where iβ  is a constant responsible for quantifying the importance of the ith training 

sample ),( ii yx . For example, 1/ iβ  may represent the variance of the ith measurement; 

noisy measurements will therefore be given less importance when learning the model. In 

addition, if one has a priori knowledge that some data xi are in some sense “better” 

representative of the system being modeled this can be accounted for in the parameter iβ . 

The unknowns in (4) are the centers ic  of the basis functions in nφ , and the weights are 

represented by nw . At the moment we suppose ic  and consequently nφ  are known and 

aim at solving for nw ; below we address determining ci. Then the value of nw  that 

minimizes (4) is found to be  
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is the Fisher information matrix.  

 We now address learning the optimal ci. An nth order KMP employs n basis 

functions. According to the definition in (3), the (n+1)th order KMP is inductively 

written as 
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with ) ,((.) 11 ⋅=φ ++ nn K c  a new basis function centered at 1+nc . The weighted sum of 

squared errors of the (n+1) th order KMP is  

∑∑ = +=+ −ββ=
N

i inii
N

i in fye
1

2
111 )]([)1( x                                      (9) 

Assuming the basis functions in 1+nφ  are all known, then from (5) 
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minimizes (9), where the Fisher information matrix 1+nM  is given as 

i
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 One may show that 1+nw , and 1+ne  are respectively related to nw  and ne  as    
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with ),( 1,1 inin K xc ++ =φ . It may be stressed that formulae (13)-(14) provide a crucial 

method for reducing the computational complexity. These techniques enable very fast 

design of kernel machines to be performed, even on large datasets. 

 With sufficient training data points, we can always make 1+nM  positive definite. 

Then 1
1

−
+nM  is also positive definite and it holds 01 >−b , which guarantees ),( 1+δ nKe c  is 

always greater than zero. Therefore, from (12B), nn ee <+1 , which means appending a new 

basis function to the KMP generally leads to decrease of the representation error on the 

training sample; the effect on generalization is more complex and has been described in 

the previous section.    

 Since ),( 1+δ nKe c  is dependent on the center 1+nc  of the new basis function, we 

obtain different values of ),( 1+δ nKe c  by selecting different 1+nc . If we confine 1+nc  to be 



selected from the training data, we may conduct a “greedy” search in the training set but 

with the previously selected data excluded to avoid repetition, selecting the datum that 

maximizes (13). Formally, we have  
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After 1+nc  is determined, we update the weights using (12A) and the Fisher information 

matrix.  

 From (13) ),( 1+δ nKe c  depends on the functional form of the kernel ),( ⋅⋅    K  as 

well as on support samples 1+nc . This allows us to optimize the kernel to gain further 

error reduction. A simple approach to take is to first conduct a “greedy” search of 1+nc  in 

the training set, for a fixed kernel, and then fix 1+nc  and optimize the parameters of the 

kernel. For radial basis function (RBF) kernels, the only parameter other than 1+nc  is the 

kernel width, thus optimization of RBF kernels with 1+nc  fixed is a one-dimensional 

search for the kernel width. It is also possible to optimize 1+nc  and the kernel width 

simultaneously, but then 1+nc  is treated as a free parameter and is no longer confined to 

the training set. Another possibility is optimization over kernels of different functional 

forms, which offers greater diversity of the basis functions available to the KMP.  

 

B. Life Long Learning  

 
 Assume that an MCM sensor system has previously performed M-1 sensing tasks, 

with each task characterized by a particular environment, mines and clutter. Now 

consider a new sensing task, for a total of M tasks. Assume that the mth task is 

characterized by mN  labeled signatures, i.e., the labeled data for task m are 

},...,1=:),{(= mnmnmm NnyD x , where nmx  is a d-dimensional real feature vector and 

}1,1-{∈nmy  is the associated label. Our objective is to design a classifier for the new 

task M while leveraging the related information available from the previous M-1 tasks. 

The algorithm discussed below automatically determines which of the M-1 previous tasks 



are relevant for learning an algorithm for task M, while minimizing the importance of the 

tasks that are not relevant.  

 The learning algorithm discussed here simultaneously designs a classifier for each 

of the M tasks, and in each case information (data) from the other tasks is shared if 

deemed relevant. Consequently there are two important applications of the algorithm: 

 

• Life-long learning, in which the algorithm trained for a new task M is placed 

within the context of all previous M-1 tasks (i.e., placed within context of 

historical data). In this manner the algorithm designed for a new task exploits all 

relevant information from previous tasks. This has the important property of 

reducing the quantity of labeled data required for each of the individual tasks, 

since data are shared among all tasks.  

 

• For multiple MCM platforms, a networked suite of distributed sensors observe 

different portions of the environment. Assume M sensor platforms collect data. 

The processing of these data may be viewed as M tasks, and it is desirable to 

integrate the execution of these multiple tasks, yielding multi-task learning. In 

multi-task learning, when analyzing a particular task, data from the other M-1 

tasks are appropriately exploited. Consequently, in the context of a multi-platform 

UUV solution, the data from each platform is viewed as a task, and the multi-task 

learning algorithm optimally shares information across tasks. 

 

A nonparametric Bayesian model is considered for jointly learning multiple classifiers, 

each corresponding to a task, with an associated dataset. In particular, we employ the 

Dirichlet Process Mixture (DPM) as the common prior on the model parameters of the 

tasks. The model automatically identifies task clusters via Bayesian inference. The main 

advantage of a nonparametric model is that it makes no assumptions regarding the 

underlying distributions, and therefore it provides a richer and more flexible 

representation than its parametric counterparts. 

 Recall that the labeled data for task m are represented as 

},...,1=:),{(= mnmnmm NnyD x , and our objective is to learn classifiers for each of the 



M tasks, by simultaneously sharing information (data) deemed relevant by the multi-task-

learning algorithm.  For each task m the conditional probability of label mny  given mnx  

is modeled via logistic regression 

 

)(=),( nm
T
mnmnmmnm yσyp xwxw                             (16) 

 

where mw  parameterizes the classifier for task m, and )]exp(+1/[)exp(=)(σ xxx . The 

goal is to learn Mmm ,1=}{w  jointly such that the resulting classifiers can accurately 

predict class labels for new test samples. The hierarchical model of Mmm ,1=}{w  is 

specified as  

 

),(~,~),(~ ommmmm GαDPGGGF θθwθw                (17) 

 

where ),( oGαDP  is a Dirichlet process with precision parameter α  and base distribution 

oG . The Dirichlet process is used to account for the uncertainty of G. Using 

Sethuraman’s stick-breaking representation, we can write 
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Using (17) and (18) we have 
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where mkc  is a cluster membership indicator defined as 1=mkc  if mw  belongs to cluster 

k, and 0=mkc  otherwise. The clustering structure of mw  represents relatedness among 

tasks.  

 The use of Dirichlet processes in Bayesian inference represents the state of the art 

in Bayesian analysis, providing flexibility and generality not available in traditional 

approaches. However, an important challenge that must be addressed is computation of 



the integrals required for inference. To address this challenge we utilize variational Bayes 

(VB) inference, which we discuss next. 

 Assume the model parameters of interest are represented by the vector θ ; we 

hope to learn these parameters based on observed data D. For density function estimation 

θ  may represent the parameters of a Gaussian mixture model (GMM), while in a 

classification problem θ  may represent the weights w in the incomplete-data logistic-

regression classifier.  

 Our objective is to obtain the posterior probability distribution of the hidden 

variables θ  based on a set of observed variables D (for GMM design the data D is 

unlabeled, while for the logistic-regression classifier D is labeled or imperfectly labeled 

data). Since an exact inference of the hidden variables θ  based on the observed variables 

D is intractable for all but the simplest model structures, our goal is to find a tractable 

variational distribution Q(θ ) that closely approximates the true posterior distribution 

)( Dθp .  

 Let p(D) denote the marginal probability of the observed data D. The log-

marginal can be written as 
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with )(' DθpP = . The summations in (21) and (22) are replaced by integrals if the hidden 

variables θ  are continuous.  

 Note that the above expression is true for any approximating variational 

distribution Q(θ ). The term )'( PQKL  represents the Kullback-Leibler (KL) divergence 

between the true posterior )( Dθp  and its variational approximation Q(θ ). Our objective 

is to optimize Q(θ ) to minimize the KL divergence between Q(θ ) and )( Dθp . 



However, since the posterior density function )( Dθp  is known, and is the subject of this 

analysis, the KL divergence in (7) cannot be evaluated. However, since )'( PQKL is 

always non-negative, the term L(Q) forms a lower bound of the log-marginal, lnp(θ ). 

Consequently, minimization of )'( PQKL with respect to Q is equivalent to maximization 

of L(Q) since the left hand side lnp(D) is independent of the variational distribution Q. 

All of the terms in (6) can be evaluated, and therefore the variational Bayes (VB) 

approximation to )( Dθp  reduces to attempting to determine the Q(θ ) that maximizes 

the variational expression L(Q).  

 For the sake of tractability, we assume that the hidden variables are independent 

of each other, meaning Q(θ ) may be written in a factorized form as )()( ∏= i ii θQQ θ , 

where { iθ } is the set of disjoint hidden variables indexed by i constituting θ . In 

variational inference we optimize the factors of the variational distribution one at a time, 

cycling sequentially through all factors. We accomplish this by separating out the terms 

involving a factor Qi( iθ ) (approximating the distribution for hidden variable iθ ). We can 

therefore maximize the lower bound L(Q) with respect to a single factor Qi (assuming all 

ijjQ ≠,  are temporarily fixed), and then cycling through each hidden variable iθ  in turn 

replacing the current distribution Qi( iθ ) with a revised estimate )(*
iiQ θ .   

 This iterative VB analysis can be performed efficiently if each Qi( iθ ) is conjugate 

to the likelihood function with all ijjθ ≠,  equal to a constant. Specifically, this conjugacy 

property allows the update equations to be performed analytically, thereby yielding a VB 

algorithm with computational speed commensurate with the widely used EM algorithm 

employed in ML point estimates of the parameters θ . Fortunately, many models have a 

structure that is directly amenable to appropriate conjugate priors. 

 

C. In Situ Learning  

 
 Assume that the labeled data with which classifier design may be performed is 

denoted DL, and the unlabeled data at the new site of interest is represented as DU. We 



consider a nonlinear classifier based on a set of NB basis functions 
BNnn ,1=}{b , where the 

basis functions are determined using the techniques discussed above in the context of 

KMP. We again utilize the kernel-based function  
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and the probability that x is associated with label y=1 is expressed as 
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with ),1=(-1=),1-=( wxwx ypyp . In (23) w is an NB+1 dimensional vector composed 

of the weights T
N B

www },...,,{ 10 , with the NB+1 dimensional vector K(x) defined in terms 

of the components K(x,xn). The function K(x,xn) is a general kernel defining the similarity 

of feature vectors x and xn. The radial basis function, 
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K nn xxxx , represents one class of kernels that may be 

employed. It is important to emphasize that the classifier in (23) and (24) yields a 

probabilistic measure as to the confidence that a given feature vector x is associated with 

a given label y, thereby presenting the decision maker with a level of algorithmic 

confidence. 

 Assume the kernel-based classifier in (23) and (24) is trained using the NL labeled 

signatures in DL. As a consequence of this training we yield a posterior estimate of the 

weights given the training data, )( Lp Dw . We may compute the information accrued in w 

via the data DL via the NB+1 ×  NB+1 dimensional Fisher information matrix, with ij 

element  
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As is well known, the Cramer-Rao bound is defined by the inverse of the Fisher 

information matrix, this defining the minimum variance with which one may estimate the 



weights w given the finite labeled data DL. To a good approximation the Fisher 

information matrix based on DL may be expressed as 

)],(-[)],([)()(=)( ∑
1=

wxwxxKxKDF nnn

N

n

T
nL fσfσ

L

 (26) 

We may now quantify the maximum information that may be added if we acquire a label 

for that member of the unlabeled data DU for which label acquisition would be most 

informative  
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 In (27) we have employed the trace, but any matrix measure may be used, such as 

the determinant. In any case, (27) quantifies the information content that may be accrued 

with regard to estimating the classifier weights w, based upon acquiring the label for the 

single most informative member of the new (testing) data DU.  

 Using the measure δ  above, one may quantify which element of  UDx∈  would 

be most informative to classifier design if it could be employed within the training phase. 

To use this UDx∈  while training, the associated label y is required. Hence δ  provides 

feedback as to which element of DU is most desirable for label acquisition. This label 

may then be acquired via personnel, by near-range possibly unmanned sensors, or via an 

analyst.  

 This is termed in situ learning because the algorithm automatically infers which 

unlabeled signatures from the site of interest would be most informative to classifier 

design if the associated labels could be acquired. This algorithm may be applied for cases 

in which there is no or little pre-existing labeled data sets for training. 

 

 

D. Feature Extraction 

 
 The implementation of identification algorithms is predicated on extracting 

features from the target strength data collected from unknown objects that are in an area 

to be cleared of mines.  Save the necessity of collecting raw data containing exploitable 

differences between mines and clutter, feature extraction is paramount.  Our overall 



design clearly delineates feature extraction from identification using the extracted 

features.  The unknown nature of the clutter in various environments we plan on 

measuring in the near future precludes discussion of the final features that will be 

employed in the operational system.  However, the features used today and the 

methodology used to select them are discussed in turn.  Following these discussions the 

issue, which was deferred earlier in the document, of how to combine the advantages 

discriminative approach with the sequential nature of the data is discussed. 

 

 Feature extraction converts the structural acoustic information contained in the 

scattered, multi-aspect, acoustic signals from targets in the low frequency band into a 

form that can be utilized by the identification algorithms.  Signal processing techniques 

are used to produce multi-aspect target strength (either in the time of frequency domain) 

from the scattered signals.    Features are then extracted from the target strength to 

implement mine identification. 

 To date, four different feature sets were explored when analyzing the 

identification performance of the  system: normalized energy in sub-bands, wavelet 

moments, relaxed matching pursuits, and central moments.  In general, the normalized 

energy features worked as well as or better than the other feature sets for the most 

challenging identification scenarios, and the results using this feature set are presented in 

previous reports about the program.  Thirty six equally distributed frequency bands are 

used for the performance estimation of the system.  The normalized energy features are 

the ratio of the energy in a frequency band normalized by the total energy in the signal: 
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1 , where ( )fP  is the signal’s spectrum, and 1f  and 2f  define the 

frequency band. 

 The normalized energy features have been robust to the channel variations do to 

the changing depth to range ratio encountered thus far.  Intuitively, this is due to the fact 

that the spectral beating, controlled by the arrival times that change when the depth to 



range ratio changes, is averaged out by the integral in the numerator of the expression for 

the normalized energy features.. 

 

 We have considered two methodologies for feature selection. The more-

sophisticated approach is called joint feature and classifier optimization (JCFO), it 

representing an extension of the aforementioned kernel-based classifiers. Specifically, we 

employ an augmented kernel representation of the following form 
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where a new vector θ  is introduced, this of dimension d, corresponding to the 

dimensionality of the feature vector x. The kernel is represented as 
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where xi is the ith component of the vector x, and bn,i is the ith component of the vector 

bn. The scalar iθ  weights the importance of the ith feature in the classifier. In the JCFO 

algorithm the goal is to learn the vectors w and θ . A sparseness prior (regularizer) is 

placed on both of these parameters, such that in the final classifier most components of w 

and θ  are zero or near-zero. We thereby simultaneously learn which basis vectors are 

most relevant for classifier design (those with non-zero corresponding components in w), 

as well as the most-relevant features (those with non-zero components in θ ). This 

simultaneous learning of the classifier design and the associated features plays an 

important role in JCFO performance, since the optimal features are a function of the 

specific classifier employed, and vice versa. 

 While the JCFO algorithm represents an excellent tool for classifier design and 

feature selection, the fact that we must solve for two vectors, w and θ , makes the 

algorithm relatively slow for large data sets. We therefore also utilize the simpler 

approach of designing a classifier using the functional 
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where now the dimensionality of the vector w is equal to d, the number of features. We 

place a sparseness prior on w, and thereby select the most relevant features when 

performing classifier design. We have found this algorithm to often serve as an excellent 

tool for designing a classifier and selecting features, and the computational speed of this 

approach is typically quite fast. In many practical applications one may utilize (30) to 

determine an initial weighting on the importance of features, with the insight so learned 

used to initialize the JCFO algorithm, yielding improved JCFO convergence properties. 
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